Methane emissions from natural gas compressor stations in the transmission and storage sector: measurements and comparisons with the EPA greenhouse gas reporting program protocol.
نویسندگان
چکیده
Equipment- and site-level methane emissions from 45 compressor stations in the transmission and storage (T&S) sector of the US natural gas system were measured, including 25 sites required to report under the EPA greenhouse gas reporting program (GHGRP). Direct measurements of fugitive and vented sources were combined with AP-42-based exhaust emission factors (for operating reciprocating engines and turbines) to produce a study onsite estimate. Site-level methane emissions were also concurrently measured with downwind-tracer-flux techniques. At most sites, these two independent estimates agreed within experimental uncertainty. Site-level methane emissions varied from 2-880 SCFM. Compressor vents, leaky isolation valves, reciprocating engine exhaust, and equipment leaks were major sources, and substantial emissions were observed at both operating and standby compressor stations. The site-level methane emission rates were highly skewed; the highest emitting 10% of sites (including two superemitters) contributed 50% of the aggregate methane emissions, while the lowest emitting 50% of sites contributed less than 10% of the aggregate emissions. Excluding the two superemitters, study-average methane emissions from compressor housings and noncompressor sources are comparable to or lower than the corresponding effective emission factors used in the EPA greenhouse gas inventory. If the two superemitters are included in the analysis, then the average emission factors based on this study could exceed the EPA greenhouse gas inventory emission factors, which highlights the potentially important contribution of superemitters to national emissions. However, quantification of their influence requires knowledge of the magnitude and frequency of superemitters across the entire T&S sector. Only 38% of the methane emissions measured by the comprehensive onsite measurements were reportable under the new EPA GHGRP because of a combination of inaccurate emission factors for leakers and exhaust methane, and various exclusions. The bias is even larger if one accounts for the superemitters, which were not captured by the onsite measurements. The magnitude of the bias varied from site to site by site type and operating state. Therefore, while the GHGRP is a valuable new source of emissions information, care must be taken when incorporating these data into emission inventories. The value of the GHGRP can be increased by requiring more direct measurements of emissions (as opposed to using counts and emission factors), eliminating exclusions such as rod-packing vents on pressurized reciprocating compressors in standby mode under Subpart-W, and using more appropriate emission factors for exhaust methane from reciprocating engines under Subpart-C.
منابع مشابه
Methane Emissions from the Natural Gas Transmission and Storage System in the United States.
The recent growth in production and utilization of natural gas offers potential climate benefits, but those benefits depend on lifecycle emissions of methane, the primary component of natural gas and a potent greenhouse gas. This study estimates methane emissions from the transmission and storage (T&S) sector of the United States natural gas industry using new data collected during 2012, includ...
متن کاملGeothermal Energy for Natural Gas Compressor Stations; an Environmental and Economical Assessment
Iran’s environmental condition is critical, since it is experiencing desertification, unsustainable development and overpopulation. The objective of this study is power source replacement in natural gas stations that operate with natural gas compressors, through using electrical motors, which can be fed by a 160 MW geothermal power plant, as an alternative to gas turbines. Application of such a...
متن کاملMethane Emissions from United States Natural Gas Gathering and Processing.
New facility-level methane (CH4) emissions measurements obtained from 114 natural gas gathering facilities and 16 processing plants in 13 U.S. states were combined with facility counts obtained from state and national databases in a Monte Carlo simulation to estimate CH4 emissions from U.S. natural gas gathering and processing operations. Total annual CH4 emissions of 2421 (+245/-237) Gg were e...
متن کاملEstimation of methane emission from the risers of urban gas network in the metropolis of Mashhad and evaluation of its economic and environmental effects
Energy Information Administration (EIA). 2022. Natural gas explained. https://www.eia.gov/energyexplained/natural-gas/use-of-natural-gas.php#:~:text=The%20United%20States%20used%20about,of%20U.S.%20total%20energy%20consumption Energy Information Administration (EIA). 2022. Natural Gas Consumption by End Use. https://www.eia.gov/dnav/ng/ng_cons_sum_dcu_nus_a.html IEA. 2020. Gas 2020. https:/...
متن کاملEstimation of gas emission released from a municipal solid waste landfill site through a modeling approach: A case study, Sanandaj, Iran
Sanitary landfill is the common strategy for municipal solid waste management in developing countries. Anaerobic decomposition of disposed wastes in landfill under favorable conditions will lead to the landfill gas (LFG) emissions, considering as emerging air pollutants. The emission of greenhouse gases, including methane, resulting from municipal solid waste disposal and treatment processes ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental science & technology
دوره 49 5 شماره
صفحات -
تاریخ انتشار 2015